2045 Metropolitan Transportation Plan

Technical Report #1 Transportation Modeling and Forecasting

Gulf Regional Planning Commission Metropolitan Planning Organization

December 2020

Table of Contents

1.0 Introduction and Model Overview
1.1 Introduction
1.2 Model Overview1
2.0 Traffic Analysis Zones and Socioeconomic Data
2.1 Study Area and Traffic Analysis Zones
2.2 Base Year (2013) Model Socioeconomic Data Update5
3.0 Roadway Network
3.1 Network Line Layer
3.2 Functional Classification
3.3 Model Link Speeds and Capacities9
3.5 Centroid Connectors
3.6 Traffic Counts
3.7 Network Attributes
4.0 External Travel
4.1 External-External Trips
4.2 External-Internal Trips
5.0 Trip Generation
5.1 Internal Travel Model21
5.2 Special Generators
5.3 Balancing Productions and Attractions24
5.4 Summary
6.0 Trip Distribution
6.1 Gravity Model
6.2 Shortest Path Matrix
6.3 Friction Factors
6.4 Terminal Times27
6.5 Trip Length Frequency Distribution27
6.6 Auto Occupancy Rates

7.0 Trip Assignment
7.1 BPR Volume-Delay Functions
8.0 Model Validation
8.2 Percent RMSE
8.3 Percent Error
9.0 Future Year Model Development
9.1 Future Year Socioeconomic Data Development
9.2 Existing Plus Committed (E+C) Network
9.3 External Station Growth
9.4 Future Year Model Runs

List of Tables

Table 2.1: Study Area Households and Population, Base Year 2013	5
Table 2.2: Study Area Households and Population, Base Year 2013	6
Table 3.1: Functional Classification Used in MPO Model	9
Table 3.2: Model Link Attributes	11
Table 4.1: Expanded 24-Hour EE Trip Table for All Vehicles	19
Table 4.2: External Station El Data	20
Table 5.1: HBW, HBO, and NHB Trip Production Rates	22
Table 5.2: HBW, HBO, and NHB Trip Attraction Rates	22
Table 5.3: CMVEH and TRK Trip Production Rates	23
Table 5.4: CMVEH and TRK Trip Attraction Rates	23
Table 5.5: Balanced Productions and Attractions	24
Table 5.6: Modeled vs Benchmark Trip Rates	25
Table 6.1: Gamma Function Friction Factors	27
Table 6.2: Average Trip Length by Trip Purpose	
Table 6.2: Model Auto Occupancy Factors	
Table 7.1: BPR Volume-Delay Function Parameters	
Table 8.1: RMSE by ADT Group	
Table 8.2: RMSE by Functional Classification	
Table 8.3: Percent Deviation by ADT Group	
Table 8.4: Percent Deviation by Functional Classification	
Table 9.1: Population and Households by Year	40
Table 9.2: Employment by Year	40
Table 9.3: Existing + Committed Projects	44
Table 9.4: External Station Forecast Growth	47

List of Figures

Figure 2.1:	MPO Study Area	1
Figure 3.1:	Roadway Network and Functional Classification, Base Year	3
Figure 3.2:	Model Capacity Factors)
Figure 4.1:	Model External Stations	7
Figure 6.1:	Modeled HBW Trip Length Frequency Distribution)
Figure 6.2:	Modeled HBO Trip Length Frequency Distribution)
Figure 6.3:	Modeled NHB Trip Length Frequency Distribution	L
Figure 9.1:	Household Growth, 2013-204541	L
Figure 9.2:	Employment Growth, 2013-204542	2
Figure 9.3:	Existing + Committeed Projects	5

1.0 Introduction and Model Overview

1.1 Introduction

This report includes a description of the procedures used in developing the updated demographics and travel estimates used in the 2045 Metropolitan Transportation Plan (MTP) for the Gulf Regional Planning Commission (GRPC) Metropolitan Planning Organization (MPO). It also describes the relationship between planning data and trip making, and the calibration and testing of the model. This report does not include how to operate the model.

1.2 Model Overview

The GRPC MPO Travel Demand Model (TDM) is being updated for use in the MPO's new 2045 MTP. The new TDM is an update of the model used in the previous MTP. The updated model was calibrated and validated to meet the requirements established by the Federal Highway Administration (FHWA) and uses the calibration and validation parameters described in the latest *Minimum Travel Demand Model Calibration and Validation Guidelines for State of Tennessee*¹.

The updated TDM continues to use the 2013 base year. Additional updates to the TDM include:

- updated master roadway network;
- updated socioeconomic data and trip rates; and
- updated turn penalties, time penalties, capacity factors, and external trip data.

¹ http://tnmug.utk.edu/wp-content/uploads/sites/47/2017/06/MinimumTravelDemandModel2016.pdf

Introduction

The GRPC MPO TDM is based upon the conventional trip-based four-step modeling approach.

Broadly, the main model components fall within the following four categories:

Trip Generation	 The process of estimating trip productions and attractions at each TAZ
Trip Distribution	•The process of linking trip productions to trip attractions for each TAZ pair.
Mode Choice	 The process of estimating the number of trips by mode for each TAZ pair. This process allows the model to calculate transit trips.
Trip Assignment	•The process of assigning auto and truck trips onto specific highway facilities in the region.

The TDM's focus is on the region's highway network due to a limited number of transit trips. As a result, a transit element has not been included, eliminating the Mode Choice step. The TDM was developed in TransCAD 8.0 travel demand forecasting software and the model interface was developed using GISDK macros.

2.0 Traffic Analysis Zones and Socioeconomic Data

2.1 Study Area and Traffic Analysis Zones

The accuracy necessary for generating trips from planning data requires it to be aggregated by small geographic areas. These areas are called Traffic Analysis Zones (TAZs).

TAZs are generally homogeneous areas and were delineated based on:

- population,
- land use,
- census geography,
- physical landmarks, and
- governmental jurisdictions.

The MTP 2045 study area and TAZ structure are the same as those established in the MTP 2040. The Gulf Coast Urbanized Area MTP 2040 study area was divided into 797 TAZs with 91 in Hancock County, 438 in Harrison County, and 268 in Jackson County. Additionally, there are 16 external stations. A map of the TAZs is shown in Figure 2.1.

All of the local governments in the MPA, including county governments, are members of the MPO. This includes:

- Waveland, Bay St. Louis, and Diamondhead in Hancock County.
- Pass Christian, Long Beach, Gulfport, Biloxi, and D'Iberville in Harrison County.
- Ocean Springs, Gautier, Pascagoula, and Moss Point in Jackson County.

The study area is comprised of the incorporated areas listed above, and includes the entirety of Hancock, Harrison, and Jackson Counties.

TAZs and Socioeconomic Data

Figure 2.1: MPO Study Area

Data Sources: Census Bureau; MPO Staff

Disclaimer: This map is for planning purposes only.

TAZs and Socioeconomic Data

2.2 Base Year (2013) Model Socioeconomic Data Update

The previous TDM had a 2013 base year that used housing, income, employment, and school attendance data as model inputs. The MTP 2045 uses the same base year as the previous model, but included an in-depth review of the study area's socioeconomic data. This section describes the procedures used to update the model files to create the updated base year socioeconomic data.

Household Data Update

Household data for the MPO TAZs was updated from the previous model's 2013 data using aerial imagery analysis to account for major areas of growth from the 2010 Census. Google Earth's "historical imagery" feature was used to find areas of growth and redevelopment and a household count corresponding to the growth was estimated and assigned for each TAZ. A corresponding population change was then developed for these locations using the ratio of population to household from the 2010 Census. Finally, the estimated changes were added to the 2010 household and population data to obtain the updated 2013 data.

Table 2.1 displays the updated household data within the study area by the portion of each county within the study area.

Variable	Hancock County	Harrsion County	Jackson County	Total
Total Population	44,661	192,654	141,325	378,640
Household Population	44,101	187,238	140,025	371,364
Households	17,680	73,545	52,760	143,985

Table 2.1: Study Area Households and Population, Base Year 2013

Source: Census 2010; NSI, 2019

Employment Data Update

Employment data for the MPO TAZs was updated from the previous model's 2013 data using an updated geocoding process and a review of aerial imagery and third-party employment data. First, all establishments were re-geocoded using an updated geocoding process that improved overall accuracy. Then, Google Earth's "historical imagery" feature was used to find major employment areas not included in the 2013 dataset. Then, the Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) 2013 dataset was compared and major discrepancies were adddressed. For new establishments added, the number of employees and NAICS industry classification was estimated based on local news articles, LEHD data, and similar developments across the state. Table 2.2 displays the study area employment by type. For modeling purposes, employment variables were differentiated into the following categories:

- Agriculture, Mining and Construction (NAICS 11, 21, 23)
- Manufacturing, Transportation/Communications/Utilities, and Wholesale Trade (NAICS 31-33, 48-49, 22, 42)
- Retail Trade (NAICS 44-45, NAICS 722)
- Government, Office, and Services (NAICS 51-56, 61, 62, 71, 721, 81, 92)
- Other Employment (NAICS 99)

			/		
Variable	Description	Hancock County	Harrison County	Jackson County	Total
TOT_EMP	Total Employment	18,941	113,158	59,054	191,153
AMC_EMP	Agriculture, Mining and Construction Employment	830	5,787	3,384	10,001
MTCUW_EMP	Manufacturing, Transportation/Communications/ Utilities and Wholesale Trade Employment	2,538	10,128	18,835	31,501
RET_EMP	Retail Employment	2,953	22,866	10,386	36,205
OS_EMP	Government, Office and Services Employment	12,620	74,377	26,449	113,446
OTH_EMP	Other Employment	0	0	0	0

Table 2.2: Study Area Households and Population, Base Year 2013

Source: InfoUSA; NSI, 2019

School Enrollment Data Update

The MTP 2045 school enrollment uses the same data as the previous TDM. School attendance figures include public and private elementary, middle, and high schools; colleges; universities; vocational and business schools. Total school attendance in the study area in 2013 was 75,098 students with 7,333 in Hancock County, 42,696 in Harrison County, and 25,069 in Jackson County. For modeling purposes, the school attendance is measured by the number of students attending a school in a traffic zone and *not* by the number of students residing in a traffic zone.

3.1 Network Line Layer

The simulation of travel patterns in a computer model requires a representation of the street and highway system in digital format. The TransCAD model creates such a network from a geographic line layer in GIS. The line layer dataview records contain descriptive information for each link and its properties. Turn prohibitions are also coded into the network at locations where certain movements are not allowed or physically cannot be made.

Adjustments were made to the model network to update the base year for accuracy.

These adjustments included:

- number of lanes and/or turn lanes,
- speeds,
- functional classification to the most up-to-date data,
- volume-delay function parameters (alpha and beta values), and
- daily traffic counts and traffic stations (where necessary).

The updated TDM continues to use a master network in the model's setup folder. This line layer contains the records for all roadway links used in the TDM process. The master network contains the data for the base year, Existing Plus Committed network, and all roadway test projects. Figure 3.1 displays the base year roadway network and link functional classifications used in the TDM.

3.2 Functional Classification

Each link in the model's roadway network was assigned a functional classification based on the system maintained by the Mississippi Department of Transportation (MDOT). The functional classifications used in the TDM are shown in Table 3.1.

Data Sources: MDOT

Disclaimer: This map is for planning purposes only.

FHWA Functional Classification		Description	MDOT Functional Classification Number
	01	Interstate	1
	02	Other Principal Arterial	2
	06	Minor Arterial	3
Rural	07	Major Collector	4
	08	Minor Collector	5
	09	Local	6
	N/A	Ramp	**
	11	Interstate	11
	12	Freeway/Expressway	12
	14	Principal Arterial	14
Urban	16	Minor Arterial	16
	17	Collector	17
	19	Local	18
	N/A	Ramp	**
Other	N/A	System Ramp	**
Other	N/A	Centroid Collector	0

Table 3.1: Functional Classification Used in MPO Model

**NOTE: Ramps follow the same functional classification as the primary roadway they connect to.

Source: FHWA, MDOT

3.3 Model Link Speeds and Capacities

Roadway speeds and capacities are important TDM inputs that affect the traffic assignment model. The posted speed, which is assumed to be the free flow speed, for each roadway link is contained In the network database. The model has been updated with new capacity factors, which are shown in Figure 3.2. The capacity inputs consider factors such as:

- Roadway functional classification
- Location of roadway in an urban or rural area
- Number of lanes
- Width of travel lanes
- Presence of a median or dividing feature
- Presence and width of shoulder on roadway

Figure 3.2: Model Capacity Factors

venicies p	ci iane per m		Aujustii					
Functional C	lass	Directional	Acronym	Name	Facility Type	Lane	Shoulder	Facto
All Interstate	9	Directional	Fw	Lane & Shoulder Width	Interstate & Sys Ramp	<=10'	0-<2'	0.78
2 Lanes		2,300			Interstate & Sys Ramp	<=10'	2'-5'	0.8
>2 Lane:	S	2,400			Interstate & Sys Ramp	<=10'	>5'	0.8
Principal Art	erial				Interstate & Sys Ramp	>10	2'-5'	0.9
Rural	Divided	1 700			Interstate & Sys Ramp	>10'	>5'	1.0
Rural	Undivided	1,500			Principal Arterial Div	<=10'	0-<2'	0.7
Urban	Divided	1.500			Principal Arterial Div	<=10'	2'-5'	0.8
Urban	Undivided	1,300			Principal Arterial Div	<=10'	>5'	0.8
					Principal Arterial Div	>10'	0-<2'	0.9
Minor Arteri	ial				Principal Arterial Div	>10'	2'-5'	0.9
Rural	Divided	1,600			Principal Arterial Div	>10'	>5'	1.0
Rural	Undivided	1,350			Principal Arterial Undiv	<=10'	0-<2'	0.7
Urban	Divided	1,400			Principal Arterial Undiv	<=10'	2'-5'	0.8
Urban	Undivided	1,150			Principal Arterial Undiv	<=10'	>5'	0.8
					Principal Arterial Undiv	>10'	0-<2	0.9
Collector					Principal Arterial Undiv	>10'	2'-5'	0.9
Rural	Divided	1,350			Principal Arterial Undiv	>10'	>5'	1.0
Rural	Undivided	1,150			Minor Arterial Div	<=9	0-<2	0.8
Urban	Divided	1,150			Minor Arterial Div	<=9'	2-5	0.8
Urban	Undivided	950			Minor Arterial Div	-9	0-21	0.9
local					Minor Arterial Div	>9'	2'-5'	1.0
Rural	2 Jane	900			Minor Arterial Div	>9'	>5'	1.0
Rural	>2 Jane	1 000			Minor Arterial Undiv	<=9'	0-<2'	0.7
Urban	2 Jane	800			Minor Arterial Undiv	<=9'	2'-5'	0.8
Urban	>2 Lane	900			Minor Arterial Undiv	<=9'	>5'	0.8
Jiban	14/10				Minor Arterial Undiv	>9'	0-<2'	0.8
Ramps		1.000			Minor Arterial Undiv	>9'	2'-5'	0.9
ampo		2,000			Minor Arterial Undiv	>9'	>5'	1.0
Centroid Co	nnectors	9.999			Collector Div	<=9'	0-<2'	0.8
					Collector Div	<=9'	2'-5'	0.8
					Collector Div	<=9'	>5'	0.9
					Collector Div	>9'	0-<2'	0.9
					Collector Div	>9'	2'-5'	1.0
					Collector Div	>9'	>5'	1.0
					Collector Undiv	<=9'	0-<2'	0.8
					Collector Undiv	<=9'	2'-5'	0.8
					Collector Undiv	<=9'	>5'	0.9
					Collector Undiv	>9'	0-<2'	0.9
					Collector Undiv	>9'	2'-5'	1.0
					Collector Undiv	>9'	>5'	1.0
					Local 2 Lane	<=9'	0-<2'	0.6
					Local 2 Lane	<=9'	2'-5'	0.7
SF = c x N x I	Fw x Fhv x Fp x	Fe x Fd x Fctl x Fpark X (V/C)i			Local 2 Lane	<=9'	>5'	0.9
					Local 2 Lane	>9'	0-<2'	0.8
SF = Model v	phpl for desired	d level of service			Local 2 Lane	>9'	2'-5'	1.0
c = ldealvp	ohpl				Local 2 Lane	>9'	>5'	1.0
N = Numbe	r of Lanes				Local >2 Lane	<=9'	0-<2	0.8
v/C)I = Rate	or service flow	for level of service D			Local >2 Lane	<=9'	2-5	0.8
					Local >2 Lane	<=9'	>5'	0.9
					Local >2 Lane	>9	21 51	0.9
						>9	2-3	1.0
					Local 22 Lane	29	25	1.1
			Fhy	Heavy Vehicle	Interstate			0.8
					Principal Arterial			0.9
					Minor Arterial			0.9
					Collector			0.9
					Local			0.9
			En	Driver Population	Bural Interstate			0.0
			, b	Priver ropulation	lirhan interstate			0.9
			I		System Ramp			0.9
					Principal Arterial			0.9
					Minor Arterial			0.9
					Collector			N.
					Local			N.
			Fe	Driving Environment	Interstate			N
			1997 - D		Rural Prin Art	Divided		1.0
					Rural Prin Art	Undivided	t	0.9
					Urban Prin Art	Divided		0.9
					Urban Prin Art	Undivideo	ł	0.8
					Rural Minor Art	Divided		1.0
					Rural Minor Art	Undivided	ł	0.9
					Urban Minor Art	Divided		0.9
					Urban Minor Art	Divided	1	0.8
					Rural Collector	Undivided	1	1.0
					Urban Collector	Divided	•	0.9
					Urban Collector	Undivided	1	0.9
					Pural local	2 Lano		0.0

	iturai Locai	z cunc	0.50
	Rural Local	>2 Lane	0.90
	Urban Local	2 Lane	0.80
	Urban Local	>2 Lane	0.80
Directional Distribution	2 Lane	Divided	0.94
(Local only)	>2 Lane	Divided	1.16
	2 Lane	Undivided	0.94
	>2 Lane	Undivided	1.10
Center Turn Lane	Interstate		NA
	All Other		1.08
On Street Parking	Any		0.95
	Directional Distribution (Local only) Center Turn Lane On Street Parking	Notes Decar Rural Local Urban Local Vertice Decar 2 Lane >2 Lane >2 Lane >2 Lane >2 Lane All Other On Street Parking	Nink Sch 2 binc Rural Local >2 Lane Urban Local 2 Lane Urban Local 2 Lane Directional Distribution 2 Lane Directional Distribution 2 Lane Directional Distribution 2 Lane Urban Local >2 Lane Divided >2 Lane Undivided >2 Lane Undivided >2 Lane Center Turn Lane Interstate All Other Any

Source: Nashville Model

3.5 Centroid Connectors

Centroid connectors are imaginary roadway network links that connect a TAZ's centroid to the adjacent roadway network at nodes. These links represent the local streets on the street and highway system that are not in the model network. Centroid connectors provide the model the ability to move trips generated from individual TAZs to the roadway network. Where centroid connectors access the model network Is based on features such as neighborhood roadway entrances, driveways, and parking lots.

During the TDM update, the centroid connectors were adjusted to match locations where traffic is most likely to access the model's roadways. This was accomplished by relocating the centroid for the TAZ to reflect the "center of mass" of developed land and/or moving the centroid connector roadway network access points to a location where trips generally enter or leave the TAZ. This changes the length of the centroid connectors and the travel times on the links to encourage modeled traffic to use certain access points to reflect the observed traffic.

3.6 Traffic Counts

The updated model contains the same traffic counts as the TDM for the MTP 2040. These counts come from MDOT and reflect the 2013 base year. The update process included the verification of count stations upon the existing TDM links and ensuring that the ADTs are assigned to the correct link, with adjustments made as necessary. The TDM also contains additional traffic volumes counts provided by the MPO.

3.7 Network Attributes

Table 3.2 displays the network attributes used on the links in the TDM.

Attribute Name	Description	Input Type
LENGTH	Real (4 bytes) Segment length in miles	Automatic
DIR	Integer (2 Bytes) 0 = Two way link 1 = one way link, AB fields will be used -1 = one way link, BA fields will be used.	Automatic but user can override.
STREET_NAME	Character Street Name	User
ADT_13	Integer (4 bytes) 2013 Daily Traffic Count	User

Table 3.2: Model Link Attributes

Attribute Name	Description	Input Type
DIR_13	Integer (2 Bytes) 2013 Link Direction 0 = Two way link 1 = one way link, AB fields will be used -1 = one way link, BA fields will be used.	User
NETWORK_13	Integer (2 bytes) 1= Network Road link 2= Centroid connector 0 or null= Link will not be included in the model run	User*
AB_MDOT_FC_13	Integer (4 bytes) Refer to Table 3.1	User
BA_MDOT_FC_13	Integer (4 bytes) Refer to Table 3.1	User
MDOT_FC_DESC_13	Character Refer toTable 3.1	User
MODEL_FC_13	Integer (4 bytes) Model functional classification code	User*
MODEL_FC_DESC_13	Character Model functional classification description	User
AB_CLASS_13	Integer (4 bytes) Field denoting number of lanes and configuration in AB direction	User
BA_CLASS_13	Integer (4 bytes) Field denoting number of lanes and configuration in BA direction	User
POSTED_SPEED_13	Integer (4 bytes) Posted Link Speed (mph)	User
AB_SPEED_13	Real (8 bytes) Link speed (mph) in AB direction	User*
BA_SPEED_13	Real (8 bytes) Link speed (mph) in BA direction	User*
LANES_13	Integer (4 bytes) Number of lanes for the roadway	User
AB_LANES_13	Integer (4 bytes) Number of lanes in AB direction	User*
BA_LANES_13	Integer (4 bytes) Number of lanes in BA direction	User*
ALPHA_13	Real (8 bytes) BPR Function Parameter	User*

Attribute Name	Description	Input Type
BETA_13	Real (8 bytes) BPR Function Parameter	User*
AB_TT_13	Real (8 bytes) Link travel time in AB direction	Model
BA_TT_13	Real (8 bytes) Link travel time in BA direction	Model
Fw_13	Real (8 bytes) Capacity factor for lane and shoulder width	User
Fhv_13	Real (8 bytes) Capacity factor for heavy vehicles	User
Fp_13	Real (8 bytes) Capacity factor for driver population	User
Fe_13	Real (8 bytes) Capacity factor for driving environment	User
Fd_13	Real (8 bytes) Capacity factor for directional distribution	User
Fctl_13	Real (8 bytes) Capacity factor for center turn lanes	User
Fpark_13	Real (8 bytes) Capacity factor for on street parking	User
Fall_13	Real (8 bytes) Overall capacity factor	User
IDEAL_VPHPL_13	Real (8 bytes) Maximum capacity in vehicles/hour/lane	User
AB_VPHPL_13	Real (8 bytes) Capacity in AB direction in vehicles/hour/lane	User
BA_VPHPL_13	Real (8 bytes) Capacity in AB direction in vehicles/hour/lane	User
IS_MANUAL_CAP_13	Integer (2 bytes) O or null= Model calculates the link capacity Any other value= Link capacity value input by User will be retained	User*
AB_CAPACITY_13	Integer (4 bytes) Capacity in AB direction	Model
BA_CAPACITY_13	Integer (4 bytes) Capacity in BA direction	Model
AB_CAP_AM_13	Integer (4 bytes) Morning capacity in AB direction	Model

Attribute Name	Description	Input Type
BA_CAP_AM_13	Integer (4 bytes) Morning capacity in BA direction	Model
AB_CAP_MD_13	Integer (4 bytes) Mid-day capacity in AB direction	Model
BA_CAP_MD_13	Integer (4 bytes) Mid-day capacity in BA direction	Model
AB_CAP_PM_13	Integer (4 bytes) Afternoon capacity in AB direction	Model
BA_CAP_PM_13	Integer (4 bytes) Afternoon capacity in BA direction	Model
AB_CAP_NT_13	Integer (4 bytes) Night time capacity in AB direction	Model
BA_CAP_NT_13	Integer (4 bytes) Night time capacity in BA direction	Model
DAILY_FLOW	Real (8 bytes) Total daily model volume	Model
AB_DAILY_FLOW	Real (8 bytes) AB directional daily model volume	Model
BA_DAILY_FLOW	Real (8 bytes) BA directional daily model volume	Model
DAILY_TOT_VMT	Real (8 bytes) Total daily vehicle miles travelled	Model
DAILY_AB_VMT	Real (8 bytes) AB directional daily vehicle miles travelled	Model
DAILY_BA_VMT	Real (8 bytes) BA directional daily vehicle miles travelled	Model
DAILY_TOT_VHT	Real (8 bytes) Total daily vehicle hours travelled	Model
DAILY_AB_VHT	Real (8 bytes) AB directional daily vehicle hours travelled	Model
DAILY_BA_VHT	Real (8 bytes) BA directional daily vehicle hours travelled	Model
DAILY_TOT_VHD	Real (8 bytes) Total daily vehicle hours delay	Model
DAILY_AB_VHD	Real (8 bytes) AB directional daily vehicle hours delay	Model
DAILY_BA_VHD	Real (8 bytes) BA directional daily vehicle hours delay	Model

Attribute Name	Description	Input Type
DAILY_AB_VOC	Real (8 bytes) AB directional volume/capacity	Model
DAILY_BA_VOC	Real (8 bytes) BA directional volume/capacity	Model
DAILY_MAX_VOC	Real (8 bytes) Higher of AB and BA volume/capacity	Model
DAILY_TRK_FLOW	Real (8 bytes) Total daily model truck volume	Model
AB_DAILY_TRK_FLOW	Real (8 bytes) AB directional daily model truck volume	Model
BA_DAILY_TRK_FLOW	Real (8 bytes) AB directional daily model truck volume	Model

Note:

1. Each of the suffix "13" fields should be repeated for EC, VIS, and SCE suffixes as well.

2. Volume-delay function parameter fields ALPHA_13 and BETA_13 are based on BPR function.

3. In addition to the base year fields, each planned year should have a field called "PROJECT_[suffix]" of type

Integer. This field should have a unique project number for each committed or planned project.

Source: NSI, 2019

4.0 External Travel

There are two types of external travel trips: external-internal (EI) trips and external-external (EE) trips. EI trips have one end of the trip inside the study area, and the other outside. EE trips pass through the study area and have no origin or destination within the study area itself. Both trip types are assigned at external stations located on significant roadways that are at the study area's periphery. These stations represent most of the trips that are crossing the study area boundary.

Since there were no changes to the study area boundary or the base year, and no additional roadways were added to the network crossing the study area boundary, the external stations are the same as the previous model.

The locations of the TDM's external stations are shown in Figure 4.1.

External trips in the model are divided into auto trips (AUTO) and truck (TRK) trips. Auto trips are those that are made in a personal vehicle. While not actually an auto trip, commercial vehicle (CMVEH) trips are included in AUTO trips for the purposes of external trips and represent four-tire commercial vehicles. Commercial vehicles include delivery and service vehicles. Truck trips represent single-unit with six or more tires and multi-unit with three-plus axle combination trucks.

External Travel

Figure 4.1: Model External Stations

Data Sources: MDOT; MPO Staff

Disclaimer: This map is for planning purposes only.

External Travel

4.1 External-External Trips

The MTP 2045 TDM uses the same external-external trip matrices developed as part of the MTP 2040 TDM. The matrices were developed using data provided through AirSage on the travel patterns in the metropolitan area and the methodology described in NCHRP 716, with the Fratar procedure used to obtain balanced trips crossing the study area boundary. Table 4.1 displays the expanded 24 hour EE trip table for all vehicles.

4.2 External-Internal Trips

The EI attraction equations used in this model were derived by regression analysis using the AirSage data and knowledge of the area's travel patterns. In addition, EI trips were also separated into auto and truck trips based on the vehicle classification counts at external stations.

The following EI attraction equations were used in the travel demand model for EIAUTO and EITRK trips.

EIAUTO Attractions = 0.4090 * (OCCDU) + 0.0791 * (RET_EMP + RET_EMP2) +

0.2235 * (AMC_EMP + MTCUW_EMP + OS_EMP + OTH_EMP)

EITRK Attractions = 0.0654 * (OCCDU) + 0.1518 * (RET_EMP + RET_EMP2) +

0.0368 (OS_EMP + OTH_EMP) + 0.2210 * (AMC_EMP) + 0.1651 * (MTCUW_EMP)

Descriptions of the variables used in the equations were included in Table 2.3. Table 4.2 displays the EI trips at each external station.

External Travel

TAZ	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	Total
901	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	4.7	7.8
902	0.0	0.0	0.0	20.8	0.0	0.0	39.6	0.0	0.0	0.0	39.3	0.0	0.0	0.0	1,388.1	17.1	1,504.9
903	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
904	0.0	20.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.8
905	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
906	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.2	0.0	12.2
907	0.0	39.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	39.6
908	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.2	0.0	13.2
909	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
910	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
911	0.0	39.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0	42.2
912	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
913	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0	0.0	0.0	2.9
914	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
915	3.1	1,388.1	0.0	0.0	0.0	12.2	0.0	13.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1,416.6
916	4.7	17.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.8
Total	7.8	1,504.9	0.0	20.8	0.0	12.2	39.6	13.2	0.0	0.0	42.2	0.0	2.9	0.0	1,416.6	21.8	3,082.0

Table 4.1: Expanded 24-Hour EE Trip Table for All Vehicles

Source: NSI, 2019

Table 4.2: External Station EI Data

Station Number	Description	EI AUTO Trips	EI TRK Trips
901	US 90 West	2,904	81
902	I-10 West	19,067	14,746
903	MS 607 North	5,300	0
904	MS 43 North	3,608	250
905	W Union Rd West	1,800	0
906	MS 53 North	2,900	77
907	US 49 North	17,510	412
908	Airey Tower Rd North	385	218
909	MS 15 North	930	0
910	MS 57 North	820	0
911	MS 63 North	7,649	664
912	MS 613 North	3,100	0
913	MS 614/Mobile CR 56 East	3,335	58
914	Fort Lake Rd/CR 33 East	2,700	0
915	I-10 East	23,707	15,283
916	US 90 East	5,690	268

Source: NSI, 2019

Trip Generation

5.0 Trip Generation

This section describes the procedures used to determine the number of trips that begin or end in a given traffic zone. Trip generation is the estimation of the amount of person trips that are produced and attracted to each TAZ. Trip rates for the various types of trips are based upon the land use properties and demographic characteristics of each TAZ.

The model considers the following internal trip purposes:

- Home-based Work (HBW)
- Home-based Other (HBO)
- Non-home-based (NHB)
- Casino Gaming (GAME)
- CMVEH
- TRK

Home-based trips are those that have one trip end located at the traveler's household. Examples of home-based trips include travel from home to work, shopping, or other personal business. Non-home-based trips include travel to and from any location that does not involve the traveler's household. Examples of these trips can include travel from work to shopping, from school to daycare, and from work to a lunch location.

5.1 Internal Travel Model

For home-based trips, the productions refer to the home end, and the attractions refer to the non-home end of the trip. For NHB, GAME, CMVEH, and TRK trips, productions and attractions refer to the origin and destination respectively.

The model uses cross-classification trip production models for the home-based and non-home-based trip purposes. This means that trip rates that vary by household type are applied at the zonal level. The trip attraction models are linear regression equations that relate zonal employment, school enrollment, and households to trip attractions. For the commercial vehicle and freight vehicle trip purposes, the model applies a linear regression equation that relates zonal employment and households to trip productions and attractions. These equations are based on the Quick Response Freight Manual II. Casino gaming trips also use linear regression equations based on zonal employment, households, occupied casino hotel rooms, and gaming square footage.

Trip Generation

The trip production and attraction models used in the MTP 2040 were checked for reasonableness and determined to be valid for the MTP 2045. However, adjustments were made to the trip rates from the previous model. The final trip generation production and attraction models for HBW, HBO, and NHB trips are shown in Tables 5.1 and 5.2 respectively. The final trip generation production and attraction models for CMVEH and TRK trips are shown in Tables 5.3 and 5.4 respectively.

	Number of Vehicles		Household Size				
The Purpose	Number of vehicles	HHS1	HHS2	HHS3	HHS4	HHS5P	
	VEH0	0.4417	1.4576	2.1180	3.0571	0.4417	
	VEH1	0.9044	1.7352	2.5976	1.4302	0.9044	
пвуу	VEH2	0.9044	1.7352	1.3987	2.3599	0.9044	
	VEH3P	0.9044	1.1989	2.2379	2.7532	0.9044	
	VEH0	0.8981	2.6944	4.7013	7.0282	0.8981	
	VEH1	1.8390	3.2076	5.7658	3.9283	1.8390	
пво	VEH2	1.8390	3.2076	3.2155	6.4817	1.8390	
	VEH3P	1.8390	2.6611	5.1448	7.5620	1.8390	
	VEH0	0.6054	1.6765	2.9383	3.9019	0.6054	
NUD	VEH1	1.2396	1.9958	3.6036	1.8628	1.2396	
INLD	VEH2	1.2396	1.9958	1.7852	3.0736	1.2396	
	VEH3P	1.2396	1.6632	2.8563	3.5859	1.2396	

Table 5.1: HBW, HBO, and NHB Trip Production Rates

Source: NSI, 2019

Table 5.2: HBW, HBO, and NHB Trip Attraction Rates

	OCCDU	RET_EMP	RET_EMP2	OS_EMP	OTH_EMP	AMC_EMP	MTCUW_EMP	SCHATT
HBW	0.0000	1.3775	1.3775	1.3775	1.3775	1.3775	1.3775	0.0000
НВО	0.7920	7.9200	7.9200	1.4960	0.4400	0.4400	0.4400	0.5870
NHB	0.4500	3.6900	3.6900	1.0800	0.4500	0.4500	0.4500	0.2484

Source: NSI, 2019

OCCDU RET_EMP RET_EMP2 OS_EMP OTH_EMP AMC_EMP MTCUW_EMP CMVEH 0.1883 0.6660 0.6660 0.3278 0.3278 0.8325 0.7035 TRK 0.0373 0.0867 0.0867 0.0210 0.0210 0.1263 0.0944

Table 5.3: CMVEH and TRK Trip Production Rates

Source: NSI, 2019

Table 5.4: CMVEH and TRK Trip Attraction Rates

	OCCDU	RET_EMP	RET_EMP2	OS_EMP	OTH_EMP	AMC_EMP	MTCUW_EMP
CMVEH	0.1883	0.6660	0.6660	0.3278	0.3278	0.8325	0.7035
TRK	0.0373	0.0867	0.0867	0.0210	0.0210	0.1263	0.0944

Source: NSI, 2019

The following equations were used in the travel demand model for GAME trips.

GAME Productions = 0.0153 * (OCCDU) + 0.1538(OCCROOM) + 0.0025 * (OS_EMP) +

0.2235 * (AMC_EMP + MTCUW_EMP + OS_EMP + OTH_EMP)

GAME Attractions = 0.2469 * (GAMESEATS)

5.2 Special Generators

A special generator is a land use with unusually low or high trip generation characteristics when compared to the established trip generation rates. For the Gulf Coast TDM these special generators included:

- TAZ 860; Stennis Space Center (-10,000 trips) the Center is a controlled access facility that does not produce as many trips as normal employment trip rates suggest it would receive. This is also attributed to visitation to the Center arriving on buses and not individual vehicles.
- TAZ 808 (2,500 trips); local traffic counts show that more trips are on the roadways than anticipated, possibly due to the local high school or nearby neighborhood.
- TAZ 487; SeaBee base (28,000) trips the SeaBee base produces more trips than the employment trip rates would suggest. This is particularly true if the base was in operation at the time the counts were taken.
- TAZs 488 and 467 (14,000 trips) a hospital and related medical facilities are located in these TAZs. Standard trip rates are under-predicting near this area since it experiencees increased traffic from deliveries and other trips.
- TAZ 60; Ingalls Shipyard (-22,000 trips) the shipyard generated more trips than the traffic counts indicated. This is due to the shipyard providing bus services and promoting carpooling, resulting in fewer trips to the facility than employment-based trip rates suggest.

Trip Generation

- TAZ 120; Mississippi Gulf Coast Community College (Jackson County Campus, 6,000 trips) the college receives more trips than the school enrollment and employment-based trip rates would suggest, leading to low traffic volumes in the model compared to observed traffic counts.
- The following TAZs received additional trips using special generators to account for casino trips that exceed the rates suggested by employment-based trip rates:

0	301 (3,500)	0	303 (2,000)	0	354 (6,000)
0	302 (6,000)	0	313 (2,000)	0	454 (2,000)

• The following TAZs received additional trips using special generators to account for beach and fishing trips the visit the region:

0	49 (1,000)	0	510 (4,000)	0	825 (2,400)
0	153 (4,000)	0	803 (3,000)	0	826 (2,400)
0	402 (10,000)	0	805 (2,400)	0	838 (2,400)
0	415 (1,000)	0	815 (2,400)	0	839 (2,400)
0	452 (2,000)	0	816 (4,000)		

5.3 Balancing Productions and Attractions

Productions and attractions are balanced at the study area level for all trip purposes. This means that the area-wide trip attractions match the amount of area-wide trip productions. HBW, HBO,NHB, GAME, and TRK trips are balanced by holding the productions as a constant. The CMVEH trips are balanced by holding the attractions as a constant. This reflects that the trips produced at the households or trip origins must be equal to the total number of trips attracted to the non-home ends or destinations. Table 5.5 shows the daily trips by trip purpose before and after balancing.

Table 5.5. Balancea i rodaettoris and Attractions									
Tria Duranaa	Before B	alancing	After Balancing						
	Productions	Attractions	Productions	Attractions					
HBW	272,802	259,313	272,802	272,802					
НВО	604,624	655,213	604,624	604,624					
NHB	400,790	379,867	400,790	400,790					
GAME	3,708	3,679	3,708	3,708					
CMVEH	114,099	114,099	114,099	114,099					
TRK	15,329	15,329	15,329	15,329					

Table 5.5: Balanced Productions and Attractions

Source: NSI, 2019

Trip Generation

5.4 Summary

Two separate documents were used In the calibration and validation of the GRPC MPO TDM. The first is the *Minimum Travel Demand Model Calibration and Validation Guidelines for State of Tennessee*, which was last updated in 2016. The second is the *Travel Model Validation and Reasonableness Checking Manual, 2nd Edition.*² Using these guidelines, several key statistics for trip generation were monitored, which are shown in Table 5.6.

Trip Rate	Modeled	Low Benchmark	High Benchmark
Person Trips per Person	3.7	3.3	4.0
Person Trips per Household	9.7	8.0	10.0
HBW Trips	21.7%	12.0%	24.0%
HBO Trips	48.2%	45.0%	60.0%
NHB Trips	30.1%	20.0%	33.0%

Table 5.6: Modeled vs Benchmark Trip Rates

Source: Minimum Travel Demand Model Calibration and Validation Guidelines for State of Tennessee; NSI, 2019

These statistics are within the reasonable limits established by the TNMUG.

² Travel Model Validation and Reasonableness Checking Manual, 2nd Edition. Travel Model Improvement Program.

6.0 Trip Distribution

The next step in travel demand modeling is the trip distribution process. This function determines the destinations of trips produced in the trip generation model, and conversely, where the attracted trips originated.

6.1 Gravity Model

Many models are available for this process; however, the GRPC MPO TDM effort used the traditional gravity model.

This model employs two relationships, the first of which is indirect:

The shorter the travel time to the destination zone, the greater the number of trips will be distributed to it from the origin zone.

The second relationship is a direct one:

The more attractions there are in a destination zone, the more trips will be distributed to it from the origin zone.

The generalized equation for this model is:

$$T_{ij} = \frac{(P_i)(A_j)(F_{ij})}{\sum_{j=1}^{n} (A_j)(F_{ij})(K_{ij})}$$

Where: T_{ij} = Trips distributed between zones i and j

P_i = Trips produced at zone i

A_j = Trips attracted to zone j

F_{ij} = Relative distribution rate (friction factors or impedance function) reflecting impedance between zone i and zone j

K_{ij} = Calibration parameter

n = Total number of zones in study area

6.2 Shortest Path Matrix

The TDM uses a travel time impedance matrix for each zonal pairing within the study area. This matrix traced the shortest free-flow travel time path from zone i (the start of the trip) to zone j (the end of the trip). These values are used in the calculation of F_{ij} as described in Section 6.1.

6.3 Friction Factors

Friction factors are another input used to calculate F_{ij}. This is the first relationship that was mentioned for the gravity model. These factors measure the probability of trip making at one-minute increments of travel time. Friction factors in the gravity model are an inverse function of travel time and each unique trip purpose has its own friction factors. This TDM effort uses the gamma function to derive the friction factors. Calibration of a gamma impedance function involves estimating the three parameters of the gamma function; a, b, and c. The gamma function parameter values used for each trip purpose are shown in Table 6.1.

Trip Purpose	а	b	С
НВО	1,075,418.6894	1.8274	0.0629
HBW	519.8224	-0.4694	0.0930
NHB	145,072.4041	1.6314	0.0505
CMVEH	1.0000	0.0000	0.0800
EIAUTO	58.1504	-0.4167	0.0660
TRK	1.0000	0.0000	0.1000
EITRK	58.1504	-0.4167	0.0660
GAME	1,075,418.6894	1.8274	0.0629

Table 6.1: Gamma Function Friction Factors

Source: NSI, 2019

6.4 Terminal Times

Terminal times reflect additional travel that is associated with a trip. These can be events such as parking or walking to vehicles and/or facilities. This factor was added to the beginning and end of each trip and is stored in a matrix used by the model. This value was derived from the previous TDM and adjusted as needed.

6.5 Trip Length Frequency Distribution

As mentioned previously, the gravity model develops friction factors in one minute increments and accommodates various trip lengths. The average trip lengths obtained from the model are displayed in Table 6.2. The average trip lengths that were estimated from the 2013 AirSage data are also displayed in Table 6.2. Figures 6.1 through 6.3 show the modeled trip length frequency distribution for HBW, HBO, and NHB trips. These curves were compared to those used in the AirSage data and determined to be within an acceptable level of consistency.

Table 6.2: Average Trip Length by Trip Purpose

	2013 Model	2013 AirSage	
The Purpose	Average Trip Length (min)	Average Trip Length (min)	
НВО	12.3	12.2	
HBW	19.1	16.8	
NHB	12.6	13.0	

Source: AirSage, 2013; NSI, 2019

6.6 Auto Occupancy Rates

The trip rates calculated in the Trip Generation step for HBW, HBO, NHB, and GAME trips are in person trips. In order for the TDM to assign vehicles to the roadway network, the amount of trips assigned must be in vehicle trips. This process is done using auto occupancy factors. It divides the amount of person trips by the corresponding occupancy factors shown in Table 6.3. These auto occupancy factors are the same as those used in the previous TDM effort.

Trip Purpose	Auto Occupancy Factor
HBW	1.12
НВО	1.92
NHB	1.68
GAME	1.92
CMVEH	1.00
TRK	1.00

Table 6.2: Model Auto Occupancy Factors

Source: NSI, 2019

7.0 Trip Assignment

Trip assignment is the final step in the traditional four step planning model.

Traffic assignment models are used to estimate the traffic flows on a network.

The main input to these models is a matrix of flows that indicate the volume of traffic between origindestination (O-D) pairs. The other inputs to these models are network topology, link characteristics, and link performance functions.

The trips between each O-D pair are loaded onto the network based on the travel time or impedance of the alternative paths that could carry this traffic. The MTP 2045 model is a user equilibrium model with a generalized cost assignment that uses travel time as the cost.

7.1 BPR Volume-Delay Functions

The TDM link travel time was estimated by the Bureau of Public Roads (BPR) Volume-Delay function. The values that were used in the BPR formula are determined by facility type. The TDM uses the same alpha and beta values from the previous MTP effort, which are assigned by a roadway's functional classification. The assignment process used in the TDM analyzes link and intersection delay. As traffic volume increases on a roadway and approaches its maximum capacity, the average speed on the roadway declines. After a point, the roadway speed declines past that of the free flow speed and indicates congestion.

The generalized equation for the BPR formula is:

$$T = T_0 * (1 + \alpha * (\frac{\nu}{c})^{\beta})$$

Where: T = Congested travel time

- T_0 = Free flow travel time
- v = Assigned link volume
- c = Capacity
- α , β = BRP coefficients

Trip Assignment

This allows for the calculation of the roadway's peak hour travel:

Peak Hour Travel Speed = (Free Flow Speed)/ $(1 + \alpha * (\frac{v}{c})^{\beta})$

The BPR coefficients used in the TDM are shown in Table 7.1.

Model Functional Classification	Alpha	Beta
Rural Interstate	0.71	2.10
Rural Principal Arterial	0.71	2.10
Rural Minor Arterial	0.71	2.10
Rural Major Collector	0.60	1.60
Rural Minor Collector	0.60	1.60
Rural Local	0.60	1.60
Rural Other	0.60	1.60
Rural On/Off Ramp	0.56	3.60
Urban Interstate	0.71	2.10
Urban Expressway	0.71	2.10
Urban Principal Arterial	0.71	2.10
Urban Minor Arterial	0.71	2.10
Urban Collector	0.60	1.60
Urban Local	0.60	1.60
Urban Other	0.60	1.60
Urban On/Off Ramp	0.56	3.60
System Ramp	0.71	2.10
Centroid Connector	0.15	4.00

Table 7.1: BPR Volume-Delay Function Parameters

Source: NSI, 2019

8.0 Model Validation

The purpose of model validation is to make the adjustments necessary to replicate the base-year traffic conditions as closely as possible.

In practice, this means making the link assignment volumes approximate the traffic estimates, based on actual counts, within acceptable limits of deviation. Generally speaking, the lower the volume, the greater the relative deviation that is acceptable. Conversely, the greater the amount of traffic, the greater the degree of accuracy required. This is because the ultimate purpose of the model is to determine whether additional vehicular capacity will be needed on any given roadway at a designated future date.

Where existing volumes are low, the model assignment may deviate from actual conditions by 40 or 50 percent without affecting the projected need for additional capacity. On the other hand, in the case of a heavily traveled interstate route, a deviation of 20 percent may be significant (i.e., alter the projection of required capacity). The validation process is intended to ensure that the model is performing within the limits that define acceptable ranges of deviation from observed "real-world" values.

As stated previously, this modeling effort uses the *Minimum Travel Demand Model Calibration and Validation Guidelines for State of Tennessee* and the *Travel Model Validation and Reasonableness Checking Manual, 2nd Edition,* as guidelines for the validation of TDMs.

The following criteria were used to validate the GRPC MPO TDM:

- Percent Root Mean Square Error (RMSE) by ADT Group
- Percent RMSE by Roadway Functional Classification
- Percent Error/Deviation by ADT Group
- Percent Error/Deviation by Functional Classification

Model Validation

8.2 Percent RMSE

The RMSE measure was chosen because when comparing model flows versus counts, sometimes a direct aggregate sum by link group can be misleading. The sum of all traffic counts for a particular link group may be close to the sum of the corresponding traffic flows, but individual link flows may still be very different than their corresponding link count. However, the RMSE statistic does not convey information about the magnitude of the error relative to that of the counts. Therefore, the Percent Root Mean Square Error (Percent RMSE or % RMSE) is often computed. This measure expresses the RMSE as a percentage of the average count value. The Percent RMSE is defined below:

$$\% RMSE = \frac{\sqrt{\sum_{j} (Model_{j} - Count_{j})^{2} / (Number of counts)}}{\left(\sum_{j} Count_{j} / Number of counts\right)} *100$$

Validation results by ADT group and functional class are shown in Table 8.1 and Table 8.2 respectively.

Table 8.1: RMSE by ADT Group

ADT Range	Number of Observations	Total Count	Total Model Volume	% RMSE	% RMSE Limit ¹
ADT<5,000	433	933,130	865,851	70.7	45.0 - 100.0
5,000 <= ADT < 10,000	143	1,010,800	885,424	34.4	35.0 - 45.0
10,000 < =ADT < 15,000	66	792,000	787,808	25.0	27.0 - 35.0
15,000 < =ADT < 20,000	40	689,000	705,985	17.9	25.0 - 30.0
20,000 < =ADT < 30,000	75	1,806,000	1,883,467	17.5	15.0 - 27.0
30,000 < =ADT <50,000	31	1,122,000	1,129,320	9.0	15.0 – 25.0
ADT>=50,000	4	235,000	246,296	8.5	10.0 - 20.0
Areawide	792	6,587,930	6,504,150	28.9	35.0 - 45.0

Source: Minimum Travel Demand Model Calibration and Validation Guidelines for State of Tennessee; NSI, 2019

Functional Classification	Number of Observations	Total Count	Total Model Volume	% RMSE	% RMSE Limit ¹
Interstate	46	1,153,000	1,224,876	10.2	20
Principal Arterial	144	3,030,500	3,119,046	17.8	30
Minor Arterial	179	1,251,470	1,149,823	32.5	40
Collector	408	1,121,850	987,394	64.8	70
Local	13	17,010	6,142	117.5	N/A
Areawide	792	6,587,930	6,504,150	28.9	35.0-45.0

Table 8.2: RMSE by Functional Classification

Source: Minimum Travel Demand Model Calibration and Validation Guidelines for State of Tennessee; NSI, 2019

(1) % RMSE Limit is the maximum acceptable magnitude of the error relative to that of the counts conducted by MDOT

8.3 Percent Error

The next measure of model validation is the percent error, or percent deviation, of the model's assigned traffic volumes to the observed traffic counts. Tables 8.3 and 8.4 display the validation results by ADT group, ADT and lane group, and by facility category respectively.

ADT Range	Number of Observations	Total Count	Total Model Volume	% Deviation	% Deviation Limit ¹
ADT<1,000	102	60,930	96,986	59.2	200.0
1,000 < =ADT < 2,500	156	253,000	240,600	-4.9	100.0
2,500 <= ADT < 5,000	175	619,200	528,264	-14.7	50.0
5,000 <= ADT < 10,000	143	1,010,800	885,424	-12.4	25.0
10,000 < =ADT <25,000	151	2,490,000	2,541,184	2.1	20.0
25,000 < =ADT < 50,000	61	1,919,000	1,965,396	2.4	15.0
ADT>=50,000	4	235,000	246,296	4.8	10.0
Areawide	792	6,587,930	6,504,150	-1.3	5.0

Table 8.3: Percent Deviation by ADT Group

Source: Minimum Travel Demand Model Calibration and Validation Guidelines for State of Tennessee; NSI, 2019

Functional Classification	Number of Observations	Total Count	Total Model Volume	% Deviation	% Deviation Limit ¹
Interstate	46	1,153,000	1,224,876	6.2	+/- 7.0
Principal Arterial	144	3,030,500	3,119,046	2.9	+/- 15.0
Minor Arterial	179	1,251,470	1,149,823	-8.1	+/- 15.0
Collector	408	1,121,850	987,394	-12.0	+/- 25.0
Local	13	17,010	6,142	-63.9	N/A
Areawide	792	6,587,930	6,504,150	-1.3	+/- 5.0

Table 8.4: Percent Deviation by Functional Classification

Source: Minimum Travel Demand Model Calibration and Validation Guidelines for State of Tennessee; NSI, 2019

(1) % Deviation Limit is the maximum acceptable magnitude of the error relative to that of the counts conducted by MDOT

The validation effort concluded that the GRPC MPO study area travel demand forecasting model performs within the established limits of acceptable deviation from base-year estimated volumes.

9.0 Future Year Model Development

Future year models were developed to forecast traffic that the study area will experience based on its anticipated growth. This includes forecast socioeconomic data, external travel, and special generator data. Forecast models also require updates to the roadway network based on projects that are expected to occur or have allocated funding in the near future.

9.1 Future Year Socioeconomic Data Development

To adequately forecast future transportation system needs, future projections of demographic variables were developed for each Traffic Analysis Zone (TAZ).

Population and Employment Growth

County level population and employment control totals for the years 2025, 2035, and 2045 were derived using forecasts developed for the Mississippi 2045 Statewide Long Range Transportation Plan. These forecasts were based on historical trends, national projections, and stakeholder input and were validated against third-party projections.

After setting control totals for each county in the study area, growth was then sub-allocated to each TAZ in the travel demand model.

- First, growth that has occurred since the base year was added, based upon a review of recent news articles and satellite imagery.
- Then, a GIS-based growth model was used to allocate the remaining growth through 2045. This growth model evaluated the attractiveness of each TAZ for residential, commercial, and industrial development and estimated its capacity for such development based on existing land development patterns and future land use regulations.
- Finally, MPO staff reviewed the growth forecasts by TAZs and adjustments were made as necessary.

Figures 9.1 and 9.2 show the projected growth in population and employment by TAZ.

School Enrollment Growth

For public primary and secondary schools, enrollment growth was projected for each school based upon the projected population growth rates in its "attendance zone." Growth rates for each "attendance zone" were developed by assigning each TAZ to a school, based on proximity and school zone boundaries, and then calculating the population growth rate for these areas from 2013 to 2045. New/planned schools were also included as necessary.

For private primary and secondary schools and colleges/universities, student enrollment was assumed to grow one percent annually based on historical and recent trends.

Table 9.1: Population and Households by Year

Variable	2013	2025	2035	2045
Total Population	378,640	414,445	444,050	473,679
Household Population	371,397	407,202	436,807	466,436
Households	143,985	157,884	169,430	180,998

Source: NSI, 2019

Table 9.2: Employment by Year

Variable	2016	2025	2035	2045
TOT_EMP	191,153	205,982	218,238	230,554
AMC_EMP	10,001	10,434	10,768	11,103
MTCUW_EMP	31,501	33,620	35,354	36,870
RET_EMP	36,205	40,017	43,362	46,690
OS_EMP	113,446	121,911	128,754	135,891
OTH_EMP	0	0	0	0

Source: NSI, 2019

Forecast Development

Figure 9.1: Household Growth, 2013-2045

Data Sources: Neel-Schaffer, Inc.

Disclaimer: This map is for planning purposes only.

Forecast Development

Figure 9.2: Employment Growth, 2013-2045

Data Sources: Neel-Schaffer, Inc.

Disclaimer: This map is for planning purposes only.

9.2 Existing Plus Committed (E+C) Network

The base year network was defined as the street and highway system that existed in year 2013. Once the base year network was calibrated, the E+C network was developed which included committed projects.

Committed projects are those improvements for which:

- construction was either completed or begun since 2013,
- a contract for construction has been awarded,
- have completed the National Environmental Policy Act (NEPA) phase, or
- have funding for right-of-way and/or construction programmed in the MPO's Transportation Improvement Program.

Committed projects were added to the base network using the following procedure:

- New routes were coded with the proposed number of lanes, and with the posted speed and volume-delay function attributes that reflect the project's functional classification.
- Widened roadways change the number of lanes to the appropriate amount in each direction as well as the lane configuration field required by the network.
- All E+C projects were flagged in the 'PROJECT_VIS' field using a unique project ID.

The committed projects are listed in Table 9.3 and shown in Figure 9.3.

Table 9.3: Existing + Committed Projects

Project ID	Roadway	Location	Improvement
71	Hwy 607	I-59 to Stennis Space Center	Widen to 4-lane divided road
72	I-10/I-110/ D'Iberville Blvd	I-10/I-110 and surrounding area	Interchange Modification
73	Popp's Ferry Rd	Cedar Lake Rd to Gay Rd/Lamey St	Widen to 4-lane divided road
74	Popp's Ferry Rd	Pass Rd to Beach Blvd	Construct new 4-lane divided road
75	Big Ridge Rd	D'Iberville Blvd to new SB I-110 On- Ram	Widen to 4-lane divided road
76	D'Iberville Blvd	New EB I-10 Off-Ramp to Popp's Ferry Rd	Widen to 4-lane divided road
77	D'Iberville Blvd	Popp's Ferry Rd to Auto Mall Pkwy	Widen to 4-lane divided road
78	Lamey Bridge Rd	Highland Ave to 600' south of Big Ridge	Reconstruct as 4-lane divided road
79	Popp's Ferry Rd	Belle St to D'Iberville Blvd @ Big Ridg	Widen to 4-lane divided road and realign
80	Creosote Rd	US 49 to Three Rivers Rd	Reconstruct as 4-lane divided road
81	Dedeaux Rd	Three Rivers Rd to Stewart Rd	Widen to 4-lane divided rd with bike path
82	Lamey Bridge Rd	I-10 bridge to Highland Ave	Reconstruct as 4-lane divided road
83	MS 15	Lamey Bridge Rd	Construct roundabout
84	I-10	Hwy 609 to MS 57	Widen to 6 lanes
85	I-10 Connector Rd	Daisy Vestry Rd to Seaman Rd	Construct new/realigned 4-lane road
86	Airport Rd	Washington Ave to existing 4 Lane	Widen to 4-lane divided road, Roundabout
87	Seaway Rd	Three Rivers Rd to Cowan Lorraine Rd	Widen to 4-lane divided road
88	28th St	34th Ave to 22nd Ave	Widen to 4-lane divided road
89	Martin Bluff Rd	Gautier-Vancleave Rd to Roys Rd	Center Turn Lane
90	Landon Rd	US49 to 34th Ave	Widen to 4-lane divided road
91	Ocean Springs Rd	US 90 to Culeoka	Center Turn Lane
98	EC Updates	Various Locations	Functional Class Changes from 2013 through 2018

Source: GRPC-MPO, MDOT

Forecast Development

Figure 9.3: Existing + Committeed Projects

Data Sources: Gulf Coast MPO; MDOT

Forecast Development

9.3 External Station Growth

The base year traffic counts at each external station were projected to 2025, 2035, and 2045 using growth factors developed based on historic traffic counts at the external stations. Development of the growth rates used the following methodology:

- Developed an average annual growth rate using historical traffic counts from 2007 through 2013.
- If the calculated average annual growth rate is less than one (1) percent, then the growth rate for that station was set at one (1) percent.
- If the calculated average annual growth rate is more than three (3) percent, then the growth rate for that station was set at three (3) percent.
- If the calculated average annual growth rate is between one (1) percent and three (3) percent, then the calculated average annual growth rate was used with no changes.
- If it was determined that a growth rate was not expected to be sustained for a long period of time it was adjusted to a reasonable rate.

The final forecast growth rates for each external station and comparison of external travel forecast for the base year and target years is shown in Table 9.4.

The total traffic at each station was then divided into EI and EE trips with the assumption that there would not be a significant change in the distribution from the base year. In addition, both EI and EE forecast trips were also separated into auto and truck trips.

External Station	Forecast Growth Rate	2013 Volume	2026 Volume	2036 Volume	2045 Volume
901	1.0%	3,000	3,380	3,734	4,125
902	1.0%	37,000	41,693	46,054	50,873
903	3.0%	5,300	7,557	10,155	13,648
904	3.0%	3,900	5,560	7,473	10,043
905	1.0%	1,800	2,028	2,240	2,475
906	1.0%	3,000	3,380	3,734	4,125
907	3.0%	18,000	25,664	34,490	46,351
908	1.0%	630	710	784	866
909	1.0%	930	1,048	1,158	1,279
910	3.0%	820	1,169	1,571	2,112
911	1.0%	8,400	9,465	10,456	11,550
912	1.2%	3,100	3,577	4,030	4,541
913	2.0%	3,400	4,312	5,256	6,407
914	1.0%	2,700	3,042	3,361	3,712
915	1.0%	42,000	47,327	52,278	57,748
916	2.0%	6,000	7,609	9,276	11,307

Table 9.4: External Station Forecast Growth

Source: GRPC-MPO; NSI, 2019

9.4 Future Year Model Runs

The TDM was used to forecast traffic for the future years using the E+C network and forecast socioeconomic, external station, and special generator data. Interpolation was used where necessary to obtain a future year scenario that occurred between the base year (2013), interim years (2025 and 2035), or the horizon year (2045). This feature was also used to conduct a 2018 model run for the purposes of the existing conditions (Technical Report 2) analysis.